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COUPLING THROUGH A WALL BETWEEN TWO FREE 
CONVECTIVE SYSTEMS 
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AhatraeG-The paper considers the problem of thermal coupling produced by conduction through the 
wall separating two boundary layers. The features of a fairly general technique capable of handling this 
problem are then outlined. A particular example of free convection near a vertical plate separating two 
reservoirs of fluid at different temperatures is considered in detail. The numerical results are then used 

to discuss the free convection system in particular and the merits of the technique in general. 
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NOMENCLATURE 

vertical displacement : 
horizontal displacement; 
similarity variables ; 
vertical velocity; 
horizontal velocity; 
temperature; 
stream function; 
functions defined in text ; 
plate width; 
plate height ; 
thermal expansion coefficient; 
thermal conductivity; 
momentum, thermal diffusivity; 
Prandtl number; 
thermal resistance ratios; 
plate heat flux density; 
plate thermal resistance per unit 
area; 
Rayleigb number 

fm&--~~Iu~l; 

kL/&& - T,,)l. 

INTRODUCTION 

CONVECTION on both sides of a thermally- 
conducting wall or plate is a common occur- 
rence in a wide variety of thermal devices and 
systems: prominent examples include heat ex- 
change equipment and the convective com- 
ponents of habitable spaces. In a typical situation 
the heat-transfer problem is broken into a 
series of sub-problems and handled in either 
of two ways. If it is satisfactory to lump the 
conductances of the two convective systems 
together with that of the intermediate plate, then 
an approximate overall heat flow analysis 
may be applied. The objection to this approach 
is the averaging implicit in the use of con- 
ductances which have usually been determined 
for boundary conditions which do not apply 
accurately to the circumstances at hand; e.g. 
they are taken empirically from isothermal 
surface data. An alternative approach is to 
first analyse each convective system in detail 
and obtain an accurate solution for each by 
replacing the other convective system, along 
with the intermediate plate, by an “equivalent” 
boundary condition. 

hot, cold, i-th fluid; 
y=u=o; 
Y-‘Wi 

plate. 
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In general, neither of the above approaches 
can be expected to predict the overall heat- 
transfer rate accurately and both of them will 
likely produce considerable error in the local 
description of the flow fields. This error is 
related to the inability of both approaches to 
incorporate a basic feature of the overall 
system; namely, the coupling produced by 
conduction through the plate separating the 
convective systems. This paper discusses a 
particular technique for accommodating the 
coupling feature for boundary-layer systems. 
Although the discussion is restricted to laminar 
conditions, and the conventional assumptions 
of negligible viscous dissipation and constant 
properties, an extension to turbulent boundary 
layers should present few additional difficulties. 

Previous work in this area is extremely scarce 
and appears to be limited to forced convection 
systems [ 1,2] although a few related conduction- 
free convection studies have been undertaken 
[3-51. From these it is evident that there is a 
need for further discussion of coupled convective 
systems in general and of coupled free convective 
systems in particular. The only broad dis- 
cussion known to the authors is that of Viskanta 
and Abrams [2] who have chosen to limit their 
presentation to results for co-current forced 
convection systems to which the super-position 
principle applies. It is very likely that their 
method would also apply to the corresponding 
counter-current situation but it is clearly not 
applicable when the velocity field or the proper- 
ties are functions of the dependent variables, 
the temperature in particular. In general, there- 
fore, an alternative method is required and the 
use of Von Mises’ transformation [2] is certainly 
one possibility, though it remains unproven 
as yet. 

The technique proposed here consists of 
treating the system in three parts: two boundary 
layer regions separated by a plate in which the 
longitudinal conductance is much less than the 
lateral conductance determining the coupling 
effect. The boundary layer problems are each 
treated in a similar way, one as a Dirichlet 

problem and the other as a Neumann problem, 
by formulating them for an arbitrary, but 
unknown, thermal boundary condition on tem- 
perature or heat flux. Their solution is facilitated 
in general through the use of transformations 
[6-g] of the type: 

$0, Y) = G(t) W, ~1 

where $ and 4 are the stream function and 
temperature, respectively, in the physical plane: 
i” is a convenient function of x, and q is a 
“similarity” variable. The functions H(t) and 
G(5) are determined from the hydrodynamic 
and thermal boundary conditions along the 
plate surface. The use of these transformations in 
the boundary layer equations reveals that the 
departure from similarity is related to the 
E-dependency of F(<, q) and @(<, q). But since 
the approximate lumped analyses assume boun- 
dary conditions which imply similarity e.g. 
isothermal plate, it follows that the departure 
from similarity also indicates the degree of 
approximation in the lumped analyses. The 
ability of the transformations to reveal this 
departure from similarity is thus of central 
importance. 

A characteristic difficulty in finding solutions 
to coupled convective systems is the absence 
of freedom to completely prescribe all of the 
boundary conditions ab initio. Instead some 
of them can only be introduced by appropriate 
expressions for continuity and conservation at 
the surfaces of the plate. In this form the un- 
prescribed boundary conditions automatically 
couple the convective systems and furthermore 
they reveal an important set of non-dimensional 
parameters which include not only the different 
physical properties of the media involved but 
also describe the relative importance of each 
of the three thermal subsystems. 

In this paper, attention is focussed on the 
particular problem of laminar, free convection 
near a conducting, vertical plate separating two 
large reservoirs of quiescent fluid each at a 
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different temperature. Whilst this problem is of zone thus define the leading edges of the counter- 
interest in itself, it also provides a searching current boundary-layer systems. 
test of the proposed technique for a counter- The boundary layer equations describing each 
flow system within which, in addition, the laminar convective system may be written as: 
energy equation is not linear in the temperature. 
Numerical results calculated for air reservoirs 
will be used to illustrate the departure from 
similarity produced by the coupling effect In 
particular, the plate temperature and heat flux 
distributions will be discussed. (1) 

FORMULATION 

The system considered is shown in Fig. 1. 

arb, @i _ a26 
‘iq + ‘layi ayi 

High temperature fluid 1 on the right hand 
side of the plate loses heat through the plate and 

xi = X,/L, yi = Ral)l$ 

is thereby cooled, thus producing a descending where 

boundary layer. The ascending boundary layer 
-=4 LV 

ui = - ui = =Iq-qrnI i 

u,Raf ’ x,Raf 
and4 

i L - T2,’ 

lnsuloted plate 
The co~esponding boundary conditions are: 

y,=o: ui=ui=o, r#Ji=cpOi(x) 

Cor a#i/aYi = M4l 

yi= cc:ui=C#+=o 

xi = 0: ui = Cpi = 0 [or a4Jayi = constant] 

(2) 

where &,(x) is the temperature distribution 
along the i-th side of the plate and is not pre- 
scribable. It is found from satisfaction of the heat 

Conducting plate 
flux continuity equation given by 

= Its CTi,W,) - T,,(X,)I 
w 

FIG. 1. Physical and coordinate systems. 

on the left hand side of the plate is produced 
by the resultant heating of low temperature 

with X 
2 = L - X,, or, in normalized form, 

fluid 2 In general, the c&ductivity of $e plate 
would vary from point to point but the specific 
example chosen hem is for a constant conduct- 
ivity over a length L and zero conductivity 
elsewhere. The extremities of the conducting 
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with x2 = 1 - x1: R = W/ks is the thermal 
resistance of the plate per unit area. 

It is convenient to transform the governing 
equations (1) into another set of partial dif- 
ferential equations by putting 

lcli(xi> Yi) = (t’i)*fi(Si? ii) 

and 

$j(Xj’ Yj) = @j(& ii) 

where iji(xi, yJ is a stream function 
ui = at,bpy and vi = -a$i/a~i, with 

5i = ‘j’ 

(4) 

such that 

and ci = y&xi)* is a similarity variable. Under 
similarity conditions, d and Qi are functions of 
ci alone and therefore, more generally, the 
solutions may be considered as variations from 
the similarity solutions which then play the role 
of base solutions. 

Before substituting the above transformations 
into (1) it is worthwhile considering the limiting 
forms of the boundary layer equations as 
Pri -+ 0, co. As Pri -+ 0, the viscous terms are 
known to be least important in the equation of 
motion whereas as Pri + co it is the inertia terms 
which are least important. In both cases the 
remaining (i.e. dominant) term of these two is 
balanced by the only driving term i.e. the 
buoyancy term. To reflect this physical behavior 
in the governing equation it is useful [7,8] to let 

and 

Fi(5i> Vi) = ( 1 y * .&(tiT ii)’ (5) 
1 

It has been noted elsewhere [4] that this Lefevre- 
type of transformation greatly reduces the 
importance of the Prandtl number in the result- 
ing problem and thus removes the need to 
determine separate solutions for a large number 
of values for Pr,. 

Using the above transformations (4) and (5) 

in the governing equations then gives: 

Pr&” + F,Fi’ - $i)2 + (1 + Pri)ai 

(6) 

where the prime denotes differentiation with 
respect to ylr It is immediately apparent from 
these that when F, cDi are independent of ti the 
equations take on a similarity form appropriate 
to an isothermal plate. Furthermore, it is evi- 
dent that as Pri -+ 0, 00 the equations become 
independent of Prandtl number. Transformation 
of the boundary conditions (2) leads to: 

qi=O: Fi=F;=O 

vi = 00: F; = Qi =O. (7) 

The missing condition on temperature at yli = 0 
must be replaced by a pair of conditions, 

and 

(84 

@,(C,,O) + @,(l - 5,>0) - 1 

where 

and 

x 

are the respective thermal resistance ratios for 
the two boundary layers, and the plate and 
second boundary layer. Equations (6) together 
with the boundary and coupling conditions 
(7) and (8) pose a complete problem. 
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NUMERICAL SOLUTIONS 
In seeking solutions to the transformed 

boundary-layer equations (6) two broad possi- 
bilities appear. Firstly, it is possible to expand 
the dependent variables in a Giirtler, or similar, 
series which upon substitution generates an 
infinite set of ordinary differential equations. 
If the latter can be written in universal forms 
it is well worthwhile using this method because 
the problem may then be solved in as general a 
form as it is possible to describe the temperature 
and velocity in terms of the original series. But 
in the present problem the boundary conditions 
are implicit in the solution as coupling con- 
ditions and therefore do not readily lend them- 
selves to such an approach. The second method, 
which is used here, is to solve the equations (6) 
as a set of partial differential equations using the 
concept of local similarity [9], thus reflecting 
the central role of the similarity solutions. 
The technique is to solve for Fi and ai numeric- 
ally for several successive values of ci at each 
of which any @dependence is incorporated 
explicitly. The starting solution is obtained by 
simply suppressing the right-hand sides of 
equations (6). Subsequent integration with re- 
spect to vi is then carried out with the &- 
derivatives approximated by explicit finite dif- 
ferences. The method of integration has been 
discussed and developed elsewhere [7, 8, lo]. 
It might be mentioned that the grid spacings 
used were Aqi = 0.04, A& = 0.05 with 0 $ 
vi & 10 and 0 < ti 6 1.0. 

The above technique is capable of handling 
a very wide range of plate temperature distri- 
butions providing, of course, that they can be 
specified in some way. In the present problem 
this is impossible ab initio and therefore the 
satisfaction of the coupling equations (8) con- 
stitutes a matching problem between the 
individual convective systems. This match- 
ing was achieved by a simple iterative 
process in which one boundary layer system 
(low temperature) was treated as a Dirichlet 
problem and the other as a Neumann problem. 
The Dirichlet solution was initiated by assuming 

that the zeroth approximation to the plate 
temperature varied linearly between Trm and 
Tzl, i.e. @?)(5,, 0) = 5,. The boundary-layer 
equations (6) were the solved with i = 2 to 
generate the corresponding heat flux, represented 
by Q;(<,, 0). The first of equations (8) was used 
next to determine a zeroth approximation to 
the heat flux on the other side of the plate. The 
boundary layer equations were then solved as a 
Neumann problem with i = 1 for all <I # 0, 1 
since equation (8a) is ill-behaved at these points. 
This solution generated the zeroth approxima- 
tion for @,(<,,O) which, together with the 
originally calculated @‘i(<,, O), was used in the 
coupling equations (taken together) to determine 
another set of values for @>,(<,, 0) described as 
&r)(<,, 0), say. Finally, a comparison between 
&$‘)(t2, 0) and @f)(<,, 0) was necessary to close 
the iterative loop. In fact, it was found by trial 
and error that the first approximation @‘,l)(<,, 0) 
was best taken as the mean of @i’)(<,, 0) and 
&f)({Z, 0); or, in general, 

@$’ W2, 0) = $[@$‘(&, 0) + @%,, 0)-J 

The iteration proceeded until @t”)(<,,O) and 
@y(eZ, 0) agreed to within 10e3. Typically, this 
took 3-6 iterations during which time most of 
the computational work was performed in the 
boundary-layer systems. The iteration process 
is illustrated in Fig. 2a. 

One minor point remains to be discussed and 
this is the involvement of plate data at <I 
(or <,) = 0, 1. The difficulty with equation (8a) 
at these points is readily resolved because 
(1) W,(O, 0) = a2(0, 0) = 0 identically, and 
(2) @,(l,O) or @,(l,O) may be calculated from 
equations (8) taken together. That is, 

@,(l, 0) - 1 = @$O’,(l, 0) 

@Jl, 0) - 1 = @* &(l, 6) (9) 

and consequently the search for two eigenvalues 
in the integration of equations (6) and (7) is 
replaced by a simpler search for one eigenvalue 
when 5, = 1. But since the profiles at ci = 1 
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(4 

FIG. 2a. Iterative matching scheme. 

have no effect on the profiles at {, < 1 there is 
no need to determine them until after matching 
has been completed elsewhere. This step is 
shown in Fig. 2b. 

RESULTS AND CONCLUSIONS 

The particular system chosen for study and 
presentation here is that in which air is the fluid 
in both reservoirs. Therefore the results refer 
to Pr, = Pr, = O-72 and CI = 1, which leaves 
one parameter (x) for discussion. For most 
plate materials sandwiched between air in 

(b) 

FIG. 2b. Trailing edge scheme. 

laminar flow, x < 0( 1). Velocity and temperature 
profiles plotted for a particular location along 
the plate revealed virtually no change between 
x = 0 and x = 0.8 and therefore it must be 
concluded that the relative resistance of the 
plate, as measured by this parameter, has very 
little effect on the field profiles for air. This 
conclusion could be less true of profile deri- 
vatives. 

0 16 

FIG. 3. Velocity and temperature profiles 

aF 

;s; 
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Figure 3 shows the field profiles for an arbi- 
trary value of 2 = 02 The curves for each of a 
series of locations on the plate indicate a 
substantial e-dependency. As expected, this 
variation is monotone for both velocity and 
temperature distributions though it is evident 
that the greatest variations occur near the 
leading and trailing edges of the conducting 
zone. The departure from similarity is seen to be 
significant. 

In a lumped conductance analysis of the air- 
air system the plate would be taken as isothermal. 
Figure 4 shows the actual plate temperature 
distribution and reveals a sigmoidal form. The 
curve for ;x = 0 co~espon~ to a plate offering 
no thermal resistance between the boundary 

IO- 

08 - 

Worm side 

O*k-!! 
To - ‘im 
Tm - T;@ 

FIG. 4. Plate temperature distribution. 

layers. On either side are plotted the high and 
low temperature surface temperature distri- 
butions for each of a set of plate resistances. 
The curve for x = 0.2 for example, corresponds 
to a glass window 1-O un thick and @3 m high 
when the trailing edge flow is approaching 
transitional conditions. In agreement with Fig. 3, 

it is evident that the greatest variations in 
surface temperature occur within about 20 per 
cent of the length at each end Therefore, even 
if temperature variation over the central region 
of the plate are neglected it is apparent that 
departures from an isothermal condition are 
very substantial over roughly 40 per cent of the 
plate. 

It could be anticipate that the heat flux 
density would show corresponding departures 
in the vinicity of the trailing and leading edges. 
Figure 5 confirms this in a comparison with a 

IO- 

08 - 

06- 

x - 

04 - 

02 - 

FIG. 5. Plate heat flux density distribution. 

curve (for one side*) based on a mean isothermal 
plate temperature. In essence, the figure illus- 
trates the controlling effect of the leading edge 
region of each boundary layer, for it is princi- 
pally in these regions that the local overall 
conductance is significantly reduced thereby 
permitting greater heat flux densities and pro- 
ducing a series of curves symmetric about 

* The corresponding curve for the other side would 
exhibit the opposite trend, thus indicating the impossibility 
of matching with an isothermal surface. 
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x (or 5) = @5. The effect of plate resistance, for 
0 < x G 08, is seen to be moderate. 

Integration of the heat flux density plotted in 
Fig. 5 enables the overall heat flux to be calcu- 
lated and this is shown non-dimensionally in 
Fig. 6. For a mean isothermal plate temperature 
the average Nusselt number is Nu = 01978 Raa 
using a lumped analysis. Comparison with the 
values generated from the present analysis 
reveals a discrepancy of the order of 10 per cent. 
The figure also indicates that the Nusselt 

028 - 

0 20 :--_-__-,_----_------- 
\ Tic 
Lp : 0,978 

-iii; Cl0 - 

p - 
gg 

012 - 

OL4 - 

0 
0 02 04 06 08 

X 

FIG. 6. Overall heat transfer relation. 

number reduces with increasing plate resistance, 
though the effect is seen to be quite small. The 
expression given suggests that the discrepancy 
would vanish at x = 1-54 but this is an unusually 
high value for an air-air system. 

The iterative process offers a variety of possi- 
bilities for matching and the test of each of these 
is the rapidity of convergence which they pro- 
duce. Ideally, perhaps, one might consider a 
technique such as the Newton-Raphson method 
but accuracy demands matching at many points 
along the plate which could lead to an unwieldy 
matrix. The same comment would apply to 
similar methods. Furthermore, these methods 

offer no special advanta~ unless convergence 
can only be expected in a narrow range and the 
number of iterations might otherwise be large. 
The physical situation considered here places 
bounds on the solution and even contains 
information on where the local solution should 
lie in relation to these bounds. It was therefore 
no great surprise to find that the Dirichlet- 
Neumann combination of boundary-layer prob- 
lems produced a fairly rapid convergence when 
the iterative loop was simply closed with the 
mean of two successive values. In fact it was 
found that the convergence rate did not appear 
to be too sensitive to the choice of the initial 
plate temperature distribution, though it did 
depend on the magnitude of the plate thermal 
resistance. 

This latter dependence may be anticipated by 
referring to the coupling equations (8) from 
which it is evident that as x is increased the 
thermal separation between the boundary layers 
increases. Conversely as x -+ 0, the thermal 
separation vanishes and in this condition the 
number of iterations required is least. The rapid 
convergence with x = 0 was an economical 
starting point for results in general because it 
provided a suitably-close approximation with 
which to enter an iterative loop with x > 0. In 
corresponding co-current boundary layer sys- 
tems the number of iterations would probably 
be even smaller. For the accuracy stated 
previously, the computing time was aiways Iess 
than 30 min on the University of Alberta 
IBM 360/67 machine. 

Free convection on both sides of a vertical 
plate is of intrinsic interest but it also serves as 
a valuable test of the method in general circum- 
stances when surface temperature variations 
will be signi~&ant and the use of symmetry 
unlikely. Thus it is reasonable to make broad 
comments on the suitability and limitations of 
the method for a much wider range of problems 
than can actually be given detailed discussion 
here. In essence the technique will apply to most 
pairs of boundary layers existing on opposite 
sides of a tong plate, provided that the latter is 
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well approximated by a one-dimensional con- 
ducting system. Thus, whilst them appear to be 
few limitations on the type of boundary layers 
or fluids which can be treated the wall separat- 
ing them must not be thick enough to require a 
solution to Laplace’s equation, nor should it 
have a conductivity much greater than that of 
the fluids flowing over it. If the latter condition 
is not met the wall will tend to offer a thermal 
short circuit and thus reduce variations in the 
surface temperature distribution. If the former 
condition is not met the analysis not invali- 
dated but the coupling equations alone are 
insufficient to describe the problem accurately 
and since very little computing time is spent in 
satisfying the coupling equations it is not likely 
that the additional solution of Laplace’s equation 
would improve the situation; it simply makes it 
less economical. There appears to be no reason 
why the technique could not accommodate 
moderate variations in local thermal resistance 
R(x) and therefore it should be applicable to 
systems involving either multi-material plates 
or unheated (or insulated) regions. 

The stream function and temperature trans- 
formations used in this paper offer some re- 
striction in that not all boundary layers may be 
so described. Furthermore, when the trans- 
formations do apply they do not provide the 
only formulation from which solutions may be 
developed. However, they do provide a very 

convenient phrasing of a wide range of boundary- 
layer problems, especially when fluid properties 
can be assumed constant. 
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COUPLAGE A TRAVERS UNE PAR01 ENTRE DEUX SYSTEMES DE CONVECTION 
NATURELLE 

R&u&~ L’article traite du problemme du couplage thermique par conduction a travers une paroi separant 
deux couches limites. On a degagt les elements caracttristiques d’une technique g&&ale capable de 
maitriser ce probleme. Un exemple particulier de convection naturelle le long dune plaque verticale 
separant deux reservoirs de fluide a differentes temperatures est ttudie en detail. Les r&sultats numeriques 
sont ensuite utilists pour discuter en particulier le systeme il convection naturelle et en general les avantages 

de la technique. 

THERMISCHE VERBINDUNG ZWEIER DURCH EINE WAND GETRENNTER 
SYSTEME MIT FREIER KONVEKTION. 

Zmumned~In dieser Arbeit wird das Problem der thermischen Verbindung info@ W&rmeleitung 
durch eine Wand, de zwei Grenzschichten trennt, untersucht. Die Grundxtige eines ziemlich allgemeinen, 
Rir die. Behandlung geeigneten Verfahrens werden aufgezeigt. Das spezielle Beispiel der freien Konvektion an 
einer senkrechten Platte, die zwei Behalter mit Fluiden unterschiedlicher Temperaturen trennt, wird im 
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Einzelnen betrachtet. Die numerischen Ergebnisse werden dann verwendet um das System mit freier 
Konvektion im Besonderen und den Vorteil des aufgezeigten Liisungs-Verfahrens im Allgemeinen zu 

besprechen. 

TEIIJIOBOm KOHTAliCT J.JBYX KOHBEHTBBHbIX CHCTEM I’IYTEM 
TEIIJIOIIPOBO~HOCTI4 YEPES CTEHICY 

AHHOT~IJWS--B CTaTbe pacCMaTpHBaeTCA IIpO6JIeMa TeIIJIOBOrO KOHTaKTa II~T~~?M TBIIJIO- 

IIPOBOAHOCT~~ YepeacTeKKy,paa~e~aIowy~ Rsa CJIOR.~~AB~~WNR cxeMaw49ecKoe 0nacaHMe 

AOBOJIbHO o6ruel3r MeTO~~K~,~p~~eH~MO~ AJIFI peI.IIeHAR 3TOi% 3aJ&kYM. nOJ(pO6HO paCCM3TpE- 

BataTCR YaCTHM& C~y~a~ CB060~K0~ Ko~%e~~~~ Bb~~3~ ~epT~Ka~bH0~ ~*~aCT~HbI, 

pa3~e~~~4e~ _qsa co?yRa c 2KIIAKocTbK) npI4 pa3jI2wioB TeMnepaType. %caetrHbIe peaynb- 

TaTbI nCnOXb3yIOTC~ 3aTeM p;JlR YaCTHOrO CJIyYaA CSICTeMbI CO CBO60~~ot KOHBeKqHeti, a 

TaitcKe AJIFI 06Cym~eHIiH 06~451~ ROCTOMHCTB 3TOrO MeTOga. 


